

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

93

INTEGRATION OF VISUALIZATION TECHNIQUES AND ACTIVE LEARNING STRATEGY

IN LEARNING COMPUTER PROGRAMMING: A PROPOSED FRAMEWORK

Siti Rosminah MD DERUS

Faculty of Art, Computing and Creative Industry

Universiti Pendidikan Sultan Idris,

35900, Tanjong Malim

 Perak, MALAYSIA

Assoc.Prof. Dr. Ahmad Zamzuri MOHAMAD ALI

Faculty of Art, Computing and Creative Industry

Universiti Pendidikan Sultan Idris,

35900, Tanjong Malim

 Perak, MALAYSIA

ABSTRACT

This paper reviews the issues and problems faced by students in learning programming, thus recommend a

conceptual framework to overcome the problem. Computer programming courses are said to be complex and

difficult, particularly to novice students. Among the causes of students’ failure in developing programming skills

is their inability to visually illustrate the flow of the program code during the program execution. To overcome

this problem, a Program Visualization (PV) is recognized as one of the available learning support tools that can

help novice students in enhancing their understanding of the programming execution. Nevertheless, using the

PV alone without the active engagement with the tools will not produce the optimal learning outcome on

students' programming performance. Previous studies indicated that, active learning strategies are among the

most effective strategies in learning programming. Apart from learning strategies, there is a requirement of

active involvement of students in the learning process, the ability to think logically which affect their ability to

solve problems, thus lead them to develop a program. In addition, using PV as learning aids is expected to

increase the students’ self-efficacy in learning assignment activity and overcome the challenges of learning.

Consequently, it is also important that these aspects are viewed in studies related to the effectiveness of any

instructional materials such as PV to enhance programming performance, particularly in finding approaches

that can improve novices’ self-efficacy.

Key Words: Programming, program visualization, active learning, logical ability, self-efficacy.

INTRODUCTION

It was globally known that programming courses are generally regarded as complex and difficult, particularly to

novice students (Bennedsen & Caspersen, 2007; Caitlin, Pausch, & Kelleher, 2003; A. J. Gomes & Mendes, 2010;

Jenkins, 2002; Robins, Rountree, & Rountree, 2003). In fact, it is considered as one of seven grand challenges

in computing education (McGetrick et al., 2005).

Many studies have been conducted pertaining to novices’ difficulties to learn programming (A. Gomes &

Mendes, 2007; Mohd Nasir, Nor Azilah, & Irfan Naufal, 2010a; Mow, 2008; Phit-Huan, Choo-Yee, & Siew-Woei,

2009; Reginamary, Hew, & Koo, 2009; Tuovinen, 2000). Based on these studies, among the problems

frequently faced by them is a difficulty in understanding abstract programming characteristics as well as to

relate the program development environment with real problems (Ala-Mutka, 2004). According to Winslow

(1996), typically a novice approach programming “line by line” rather than using meaningful program

structures. This factor is due to their limited knowledge to surface and superficial, resulting their inability to

develop a perfect mental model for problem solution involving the programming development process

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

94

(Reginamary et al., 2009; Robins et al., 2003). Research finding showed that among the reason of student’s

difficulty in mastering programming skills was due to their inability in visualizing the flow of the programming

process (Ahmad Rizal, Mohd Yusop, Abdul Rasid, & Mohamad Zaid, 2011; Milne & Rowe, 2002). Moreover, the

problem worsens when static media were employed in teaching dynamic concepts of programming (A. Gomes

& Mendes, 2007; Linden & Lederman, 2011). Therefore, an effective instructional strategy with the aid of

appropriate learning support tool is crucial to ensure an optimal learning outcome (Ala-Mutka, 2004; Mow,

2008). Program Visualization (PV) is a learning support tool which can be visually assisting the students in

understanding the behaviour of programs (Lahtinen, Ala-Mutka, & Järvinen, 2005; Mow, 2008; Yousoof,

Sapiyan, & Khaja, 2005). According to Pears et al., (2007), humans have a better ability in processing visual

information. It is therefore, PV could potentially aid students to understand the important elements related to

program behavior during the execution of programs. Furthermore, visualization could also be used in assisting

students to link new knowledge with old knowledge (Hyrskykari, 1993).

PROGRAM VISUALIZATION (PV)

Program visualization (PV) can be defined as a visual representation of program or algorithm execution in the

form of graphical components. The main goal of PV is to assist students in understanding the dynamic

behaviour of the program by displaying aspects like values of variables, evaluation of statements, and changes

in the program state in general. In addition, PV could also explain visually the hidden processes during the

program run-time (Bednarik, Moreno, Myller, & Sutinen, 2005). PV consists of two categories: dynamic PV and

static PV (Rajala, Laaksi, Kaila, & Salakoski, 2008). Dynamic PV visualizes the flow of programming execution for

every line of code for each value to the program variables used. An example of a dynamic PV tool is

Jeliot3(Moreno, Myller, Sutinen, & Ben-Ari, 2004). While Static PV visualizes program structures and relations

between program objects. An example of a popular static PV tool is BlueJ (Kölling, Quig, Patterson, &

Rosenberg, 2003).

Programming involves numerous of implicit knowledge which lecturers are having constraint to explain

explicitly with greater clarity and orderly, particularly the abstraction concept in programming (Fetaji,

Loskovska, Fetaji, & Ebibi, 2007). Exist tension among novice students in understanding through static media

such as text book, projected presentation, white board or verbal explanation (Fouh, Akbar, & Shaffer, 2012).

Therefore, PV provides an environment which dynamically represent programming concepts for better

understanding (Gomes & Mendes, 2007; Gračanin, Matković, & Eltoweissy, 2005). However, in developing PV,

the role and limitation of students’ cognitive ability need to be addressed throughout the development

process. Developers need to understand how program visualization can be used to foster learning and they

should not base the design on their own preferences that may or may not fit well with learners. For that

reason, understanding how PV affects students’ learning requires deep understanding of how information is

processed in human memory structure. Design that do not consider students' cognitive ability will only lead to

failure of the device to assist effective learning (Tudoreanu, 2003).

Though PV have strong arguments towards assisting learning, the excessive studies about the effectiveness of

these teaching and learning aids show inconsistence results (Hundhausen, Douglas, & Stasko, 2002; Linden &

Lederman, 2011; Sheard, Simon, Hamilton, & Lonnberg, 2009). One of the most recognized studies in the field

of visualization in computer science education is the meta-study by Hundhausen et al. (2002). They conducted

a study which analysed 24 educational experiments using visualizations. Only 46% (11 out of 24) of studies

yielded significant results favouring the treatment group. Hundhausen et al. (2002) reported that in many of

those evaluated experiments the focus was on the number of visualized components instead of how those

visualizations benefited students’ learning. Hundhausen et al. (2002) concluded that the passive usage

(viewing) of visualization does not guarantee better learning performance and it is really important to engage

and activate the learner with visualization during the learning activity. The importance of interaction between

students and material is reported in the educational literature, in the field of multimedia learning which the

addition element of interactivity to the multimedia learning enhanced the students performance (see e.g Evans

& Gibbons, 2007; Mayer, Dow, & Mayer, 2003).

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

95

ACTIVE LEARNING STRATEGIES INVOLVING ENGAGEMENT OF STUDENTS

Active learning is generally defined as any method of teaching that involves students in the learning process

(Prince, 2004). It requires students to do meaningful learning activities and think about what they are doing. In

the theory of constructivism, knowledge is constructed by students as a result of the learning experience

through which they had (Driscoll, 2005; Loyens & Gijbels, 2008). It means during the learning process, students

will activate prior knowledge stored in long-term memory and try to connect with new knowledge learned

(Loyens & Gijbels, 2008).

Programming skills cannot be obtained directly if they have not actively engaged in learning activities (Fetaji et

al., 2007; Reginamary et al., 2009). Abstract concepts in programming can't be concrete unless students are

given hands-on experience that will make the concept of being clear and also learned through their own

experience (Parham, 2003). This is proven through studies carried out by Gonzalez (2006) that implement

active learning strategy and cooperative learning in the introduction programming course (CS1), showed

positive results in students' programming performance when 70% of the students successful while learning in

advanced programming courses (CS2). Therefore, as PV is beneficial for students to comprehend the abstract

concept of programming, it is essential to administer an active learning strategy in order to guide student to

actively engage with the tool. This can be implemented by utilizing Engagement Taxonomy (ET) proposed by

(Naps et al. (2002), the modes by which students could become active participants in exploring with a PV. ET

describes different forms of engagement that can be promoted by a visualization tool and it provides testable

hypotheses about how the engagement level of visualization affects the learning outcomes. The central idea of

the taxonomy is a higher-level engagement between learner and the visualization results for better learning

outcomes. The ET consists of six levels of engagement and they are described in Table 1. Nevertheless question

arises for novice students since they do not have strong existing knowledge related to topics studied. Without a

strong pre-existing knowledge, active involvement may be limited. In this regard, to study the impact of the

engagement level and programming learning performance would be of a great value and interest.

Table 1: Engagement Taxonomy Level (Source: Naps et al.,(2002))

No. Engagement Level

1 No Viewing There is no use of visualization tools

2 Viewing Considered the core of student engagement with the visualization tool. Students

only view the behavior of program activities from screen display.

3 Responding

Learner interacts with visualization by responding to visualization’s related

questions.

4 Changing Visualization or state of visualization can be altered.

5 Constructing Learner can create own visualizations.

6 Presenting Learner presents visualizations for discussion and feedback.

OTHERS FACTOR RELATING TO STUDENT’S PROGRAMMING PERFORMANCE

Aspect from the correct design and the right active learning strategy still does not guarantee students’

programming performance. Factors such as student’s perception and self-efficacy that they are able to

complete tasks, control strategies and learning environment should also be taken into account (Ghazali, Nik

Mohd, Parilah, Wan Haslina, & Ahmed Thalal, 2011). Self-efficacy is a belief in an individual's capability to

organize and perform necessary actions required to attain designated types of performance (Bandura, 1977).

Previous reseach conducted showed a significant relationship between student self-efficacy learning

performance especially in the area of programming (Ramalingam, LaBelle, & Wiedenbeck, 2004). In relation to

the effectiveness of any instructional materials such as utilizing PV to enhance learning programming, these are

seen as important aspects of approaches, which could improve novice self-efficacy.

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

96

The relationship between problem solving and programming development should be the main focus of any

introductory course in programming (Eckerdal & Berglund, 2005; Schneider, 1978). The core skill of problem

solving is depending on competencies of students in making logical assumption (Ahmad Rizal et al., 2011).

There is a correlation between students' logical skills with programming performance (Mohd Nasir, Nor Azilah,

& Irfan Naufal, 2010b; Parham, 2003). Therefore, logical and analytical skills are function as an important

elements in determining the ability of students to solve problems. Logical and analytical skills are crucial in

order to understand the problem, to analyze the situation and review results of each step taken and, creativity

is necessary for them to form solution to the problem.

Hence, in this study, a prototype PV with various active learning strategies is developed and designed

specifically for novice to test their effectiveness of performance and self-efficacy. This study will also look at the

impact of learning strategies aided by PV on students from different logical capabilities in detail. The acctive

learning strategy is based on the engagement taxonomy levels as recommended by Naps et al., (2002).

According to Naps (2005) which stated that the level of ET truly involves students actively participate is the

highest of four levels. Therefore, this study will only focus on four active learning strategies based from the

four highest levels of ET, which is: i) responding), ii) changing), iii) constructing and iv) presenting.

Theoretical framework

The theoretical framework of this study is grounded on Atkinson-Shiffrin Memory Model (Atkinson & Shiffrin,

1971) and Cognitive Load Theory (Sweller, 1988). Learning is a process which information is received,

processed, encoded and retrievable from memory structure (Lin & Dwyer, 2004). Atkinson & Shiffrin, (1971)

classifies memory storage into three types, namely sensory memory, working memory and long-term memory

(Figure 1). Each of these memories has its own role in receiving and processing information. Typically,

information stored in sensory memory is merely about ½ to 1 second, working memory will store information

about 15 to 30 seconds and long-term memory will store information permanently (Ismail, 2011). New

information can purely be stored in long-term memory after they first appear and process in working memory.

However, as disclosed, working memory capacity is limited and the duration of information storage is very

short. Therefore, not all information penetrated the memory structures will work successfully, and registered

permanently as in the long-term memory, in the form of perfect schema (Chandler, 1995).

Figure 1: Information Flow In Memory System (Source: Atkinson & Shiffrin, 1971)

Cognitive Load theory (Sweller, 1988; 2002) describes the learning process from the perspective of information

processing system that keep all information obtained from working memory in the long-term memory in the

form of perfect schema. Scheme is a memory structure that allows students to deal with a large number of

information blocks as if they are a single block. New information which enters the working needs to be

integrated with pre-existing schemas in long term memory for sufficient mental model development in working

memory. For this to take place, relevant schemas in long-term memory must be activated and decoded into

working memory which is also defined as the process of schema aquisition. The inability of perfect mental

models construction can be a barrier in the learning process, primarily to novice students who are not capable

of recognizing the relevant pre-existing scheme in the learning process. Due to limited capacity of working

memory, when student are overloaded with information and the complexity of teaching materials that are not

well managed, it will be resulted in a cognitive load that potentially cause the process of loaded coding scheme

perfectly affected (Jong, 2009; Sweller, 1988).

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

97

Cognitive load is divided into three different categories of: i) intrinsic cognitive load, refers to the level of

complexity or difficulty of the information to be learned; ii) extraneous cognitive load, refers to the techniques

and strategies used in presenting information ; and iii) germane cognitive load, refer to impulse formation

scheme through learning content management and integration of educational content to student knowledge

(Hasler, Kersten, & Sweller, 2007; Sweller, Merrienboer, & Paas, 1998; Sweller, 2010). Consequently, the

development of instructional materials must be taken into consideration of principles which can reduce

intrinsic cognitive load and extraneous cognitive load, and simultaneously will increase germane cognitive load

(Caspersen & Bennedsen, 2007). Optimizing the learning outcomes is through by balancing the three cognitive

loads, for instance to reduce intrinsic cognitive load and extraneous cognitive load which will indirectly increase

germane cognitive load (Bennedsen & Caspersen, 2007; Sweller, 2010)..

Conceptual Framework

Based on theories, principles and literature overview, the study proposes a framework of utilizing a

visualization technique for the purpose of learning the program as depicted in Figure 2. A prototyped PV

developed specifically for novice students in understanding the basic concepts of programming. The visual

information presented by PV dynamically is expected to help students to understand the key elements relating

to program behavior during the program execution. Nevertheless, the PV developed should be balanced with

the role and limitation of students' working memory capacity. This is because the visual information conveyed

by PV should be able to help students develop accurate mental models in working memory for processing, thus

creating the perfect scheme to be stored in long-term memory. Considering the limited capacity of working

memory, if the visual information presented is not in line with the scheme which has been in existence in the

long-term memory, this will cause cognitive load happens to students as they have to strive to understand the

new information to be conveyed without associating it with existing knowledge. Therefore, the development of

PV based on instructional design principles is crucial in this study to ensure the effectiveness of PV as a

programming learning support tool.

Figure 2: Conceptual Framework

Learning Active Strategy (LAS)

• LAS (Responding)

• LAS (Changing)

• LAS (Constructing)

• LAS (Presenting)

Logical Ability

• Low Logic (LL)

• High Logic (HL)

Engagement Taxonomy

(Naps et. al, (2002)

Performance

Test

Self-Efficacy

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

98

Strategy and approaches the visual representation of information is also essential to ensure effective use of

information in long-term memory. Inappropriate use of strategies will lead to increase a cognitive load during

learning activities, particularly if the visual information from the PV only focuses the dynamic presentation of

program execution. Students should be actively engaged with PV in order to active processing occurs in

working memory. Consequently, this framework proposed the implementation of active learning strategies

based upon the engagement taxonomy levels as recommended by Naps et al., (2002) with the central idea of

ET that the higher the level of student engagement with PV, the better the learning outcome. However, does

this assumption could effectively affect novice? Students will actively be involved if they have been existing

knowledge related to the topics learned. Without pre-existing knowledge, active engagement is likely to be

limited. Thus, it is important to study the impact of engagement level on the students’ programming

performance, especially among novices.

The development of education world nowadays does not only focus on learning performance. Consideration is

given towards students’ self-efficacy improvement of foreseeing them to carry out learning tasks and overcome

the challenges of learning. Students with high self-eeficacy tend to learn and strive to achieve success as

compared to students with low self-efficacy, although they have the same capabilities (Bandura, 1986). Thus,

this study is important to observe whether through the active learning strategies approach aided by PV are able

to increase students' self-efficacy, especially novice.

This framework involves the relationship of logical ability with the proposed active learning strategy. This is

because as believed, student’s logical ability is recognized as one of the important elements needed to solve

programming problems during the learning activities. Thus, it is important to investigate whether the student’s

logical ability really affect the learning performance through the active learning strategies approach aided by

PV.

CONCLUSION

Programming courses are closely related to skills comprises the set of sequence or order through the

programming language which then is translated and executed by a computer. However, the subject is said to

be difficult and complex. This is because novice students require a proper understanding to capture an abstract

concept of the learning and difficult to imagine. Previous finding shows that amongst factor students’ difficulty

to master programming is because they could not visualize the programming process. Therefore, the designed

and developed PV is function as the potential learning support tools to strengthen students' understanding of

the programming learning process. PV using the approaches and techniques of dynamic performances in

illustrating the changes to the program code and thus helping students grasp the changes that occurred to the

program states. Nevertheless, using PV merely without the active engagement of students will not be able to

give an effective impact on students' programming performance. Therefore, an active learning strategy is

functions an approach that must be embedded in the learning process of programming. Through active

learning strategies aided by PV, it is hoped that it will help to develop students' confidence in mastering the

basic concepts of programming. There is still a thin layer lining in the clowd and we may expect to see the light

at the end of the tunnel.

IJONTE’s Note: This article was presented at World Conference on Educational and Instructional Studies –

WCEIS 07- 09 November, 2013, Antalya-Turkey and was selected for publication for Volume 5 Number 1 of

IJONTE 2014 by IJONTE Scientific Committee.

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

99

BIODATA AND CONTACT ADDRESSES OF AUTHORS

Siti Rosminah MD DERUS is currently a PHD student in the Faculty of Art, Computing and

Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia. She has a Bachelor degree

in Electrical Engineering (Computer Technology) from Universiti Teknologi Malaysia, and a

Master in Education from Universiti Teknologi Malaysia. Her research interest is

instructional technology and programming visualization.

Siti Rosminah MD DERUS

Faculty of Art, Computing and Creative Industry

Universiti Pendidikan Sultan Idris,

35900, Tanjong Malim, Perak, MALAYSIA

E. Mail: ctrosminah@gmail.com

Ahmad Zamzuri MOHAMAD ALI is Associate Professor of Multimedia in the Faculty of Art,

Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia. He has a

Bachelor degree in Electrical Engineering from Universiti Teknologi Malaysia, a Master in

Education from Universiti Teknologi Malaysia and PhD in Multimedia Design from Universiti

Sains Malaysia. His research interest is multimedia design, instructional technology, mobile

learning, and integrated knowledge.

Assoc.Prof. Dr. Ahmad Zamzuri MOHAMAD ALI

Faculty of Art, Computing and Creative Industry

Universiti Pendidikan Sultan Idris,

35900, Tanjong Malim, Perak, MALAYSIA

E. Mail: zamzuri@fskik.upsi.edu.my

REFERENCES

Ahmad Rizal, M., Mohd Yusop, A. H., Abdul Rasid, R., & Mohamad Zaid, M. (2011). The Effect of Using Learning

Model Based on Problem Solving Method on Students with Different Cognitive Style and Logic Ability.

Educational Research, 2(9), 1498–1505. Retrieved June 22, 2013, from

http://interesjournals.org/ER/pdf/2011/September/Madar et al.pdf

Ala-Mutka, K. (2004). Problems in learning and teaching programming-A literature study for developing

visualizations in the Codewitz-Minerva Project. Codewitz Needs Analysis, 1–13. Retrieved January 22, 2012,

from www.cs.tut.fi/~edge/literature_study.pd

Atkinson, R. C., & Shiffrin, R. M. (1971). The control processes of short-term memory (pp. 1–23). Stanford,

California.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2),

191–215.

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ.

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

100

Bednarik, R., Moreno, a., Myller, N., & Sutinen, E. (2005). Smart program visualization technologies: planning a

next step. Fifth IEEE International Conference on Advanced Learning Technologies (ICALT’05), 717–721.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in Introductory Programming. ACM SIGCSE Bulletin,

39(2), 32–36.

Caitlin, K., Pausch, R., & Kelleher, C. (2003). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2),

83–137. Retrieved january 15, 2002 from http://dl.acm.org/citation.cfm?id=1089734

Chandler, P. (1995). Is conventional computer instruction ineffective for learning ? In Australia Computers in

Education Conference. Perth. Retrieved Mei 3, 2012, from

http://www.penta2.ufrgs.br/edu/telelab/6/chandler.htm

Driscoll, M. P. (2005). Psychology of learning for instruction. Boston, MA: Allyn & Bacon Publishers.

Eckerdal, A., & Berglund, A. (2005). What does it take to learn ’ Programming Thinking ’? In ACM (Ed.), ICER ’05

Proceedings of the first international workshop on Computing education research (pp. 135–142).

Evans, C., & Gibbons, N. J. (2007). The interactivity effect in multimedia learning. Computers & Education, 49(4),

1147–1160.

Fetaji, M., Loskovska, S., Fetaji, B., & Ebibi, M. (2007). Combining virtual learning environment and integrated

development environment to enhance e-learning. In Proceedings of the ITI 2007 29th Int. Conf. on Information

Technology Interfaces (pp. 319–324).

Fouh, E., Akbar, M., & Shaffer, C. a. (2012). The role of visualization in Computer Science education. Computers

in the Schools, 29(1-2), 95–117.

Ghazali, Y., Nik Mohd, R., Parilah, M. S., Wan Haslina, W., & Ahmed Thalal, H. (2011). Kepercayaan Jangkaan

Keupayaan Kendiri Dalam Kalangan Pelajar Kursus Bahasa Arab (Self-Efficacy Among Students Of Arabic

Language Course). GEMA Online Journal of Language Studies, 11(1), 81–96. Retrieved July, 2, 2013, from

http://ejournal.ukm.my/gema/article/view/69/63.

Gomes, A., & Mendes, A. J. (2007). Learning to program-difficulties and solutions. In International Conference

on Engineering. Cimbra, Portugal. Retrieved Mei 3, 2012, from

http://ineer.org/Events/ICEE2007/papers/411.pdf.

Gonzalez, G. (2006). A systematic approach to active and cooperative learning in CS1 and its effects on CS2. In

SIGCSE ’06 Proceedings of the 37th SIGCSE technical symposium on Computer science education (pp. 133–137).

Gračanin, D., Matković, K., & Eltoweissy, M. (2005). Software visualization. Innovations in Systems and Software

Engineering, 1(2), 221–230.

Hasler, B. S., Kersten, B., & Sweller, J. (2007). Learner Control , Cognitive Load and Instructional Animation.

Applied Cognitive Psychology, 729, 713–729.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm visualization effectiveness.

Journal of Visual Languages and Computing, 13, 259–290.

Hyrskykari, A. (1993). Development of program visualization systems. In 2nd Czech British Symposium of Visual

of Man-Machine Systems (pp. 1–21). Prague,Czech.

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

101

Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the 3rd Annual Conference of the

LTSN Centre for Information and Computer Sciences (Vol. 4, pp. 53–58). Retrieved Mac, 6, 2012, from

http://www.ics.heacademy.ac.uk/Events/conf2002/tjenkins.pdf.

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal of

Computer Science Education, 13(4), 1–12. Retrieved November 12, 2012 from

http://www.bluej.org/papers/2003-12-CSEd-bluej.pdf.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. ACM

SIGCSE Bulletin, 37(3), 14.

Lin, C.L., & Dwyer, F. (2004). Effect of varied animated enhancement strategies in facilitating achievement of

different educational objectives. International Journal of Instructional Media, 31(2), 185-199.

Linden, T., & Lederman, R. (2011). Creating visualizations from multimedia building blocks : A simple approach

to teaching programming concepts. In Information Systems Educators Conference -ISECON 2011 (pp. 1–10).

Wilmington North Carolina. Retrieved September 3, 2012 from http://proc.isecon.org/2011/pdf/1619.pdf.

Loyens, S. M. M., & Gijbels, D. (2008). Understanding the effects of constructivist learning environments:

introducing a multi-directional approach. Instructional Science, 36(5-6), 351–357.

Mayer, S., Dow, G. T., & Mayer, R. E. (2003). Multimedia Learning in an Interactive Self-Explaining Environment:

What Works in the Design of Agent-Based Microworlds? Journal of Educational Psychology.

McGetrick, A., Borle, R., Ibbett, R., Llyod, J., Lovegrove, G., & Mander, K. (2005). Grand challenges in computing:

Education-A Summary. The Computer Journal, 48(1), 42–48.

Milne, I., & Rowe, G. (2002). Difficulties in learning and teaching trogramming — Views of students and tutors.

(D. Watson, Ed.)Education and Information Technologies, 7(1), 55–66.

Mohd Nasir, I., Nor Azilah, N., & Irfan Naufal, U. (2010a). Instructional strategy in the teaching of computer

programming : A need assessment analyses. TOJET, 9(2), 125–131. Retrieved Mei 18, 2012 from

http://tojet.net/articles/9214.pdf.

Mohd Nasir, I., Nor Azilah, N., & Irfan Naufal, U. (2010b). The effects of mind mapping with cooperative

learning on programming performance, problem solving skill and metacognitive knowledge among Computer

Science students. Journal of Educational Computing Research, 42(1), 35–61.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. Proceedings of the

working conference on Advanced visual interfaces - AVI ’04, 373.

Mow, I. T. C. (2008). Issues and difficulties in teaching novice computer programming. In Innovative Techniques

Technology, E-learning, E-assessment and Education (pp. 199–204).

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., … Velazquez-Iturbide, J. A.

(2002). Exploring the role of visualization and engagement in computer science education. In ITiCSE-WGR ’02

Working group reports from ITiCSE on Innovation and technology in computer science education (pp. 131–152).

ACM.

Parham, J. R. (2003). An assessment and evaluation of Computer Science education. Journal of Computing

Sciences in Colleges, 19(12), 115–127. Retrieved Jun 15, 2012 from

http://www.cs.clemson.edu/~jparham/parham_2003_publication.pdf

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

102

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., … Paterson, J. (2007). A survey of

literature on the teaching of Introductory Programming. In ITiCSE-WGR ’07 Working group reports on ITiCSE on

Innovation and technology in computer science education (pp. 204–223). ACM.

Phit-Huan, T., Choo-Yee, T., & Siew-Woei, L. (2009). Learning difficulties in programming courses:

Undergraduates’ perspective and perception. 2009 International Conference on Computer Technology and

Development, 2, 42–46.

Prince, M. (2004). Does active learning work ? A review of the research. Journal of Engineering Education,

93(3), 223–231.

Rajala, T., Laaksi, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of Program Visualization: A case study

with the ViLLE tool. Journal of Information Technology Education: Innovatins in Practice, 7, 15–32. Retrieved

Mac 10, 2012 from http://jite.org/documents/Vol7/JITEv7IIP015-032Rajala394.pdf.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-efficacy and mental models in learning to program.

In Proceedings of the 9th annual SIGCSE conference on Innovation and technology in computer science

education - ITiCSE ’04 (p. 171). New York, New York, USA: ACM Press.

Reginamary, M., Hew, S. H., & Koo, A. C. (2009). Multimedia Learning Object to build cognitive understanding in

learning Introductory Programming. In Proceedings of the 7th International Conference on Advances in Mobile

Computing and Multimedia -MoMM ’09 (pp. 396–400). New York: ACM New York, NY, USA ©2009.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.

Computer Science Education, 13(2), 137–172. Retrieved February 17, 2012 from

http://www.tandfonline.com/doi/abs/10.1076/csed.13.2.137.14200.

Schneider, G. M. (1978). The Introductory Programming course in Computer Science : Ten principles. In SIGCSE

’78 Papers of the SIGCSE/CSA technical symposium on Computer science education (pp. 107–114). ACM.

Sheard, J., Simon, S., Hamilton, M., & Lonnberg, J. (2009). Analysis of research into the teaching and learning of

programming. In 5th International Workshop on Computing Education Research Workshop (pp. 93–104).

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.

Sweller, J. (2002). Visualization and instructional design. In Proceedings of the International Workshop on

Dynamic Visualization and Learning (pp. 1501–1510). Germany. Retrieved January 18, 2012 from

http://www.iwm-kmrc.de/workshops/visualization/sweller.pdf.

Sweller, J. (2010). Element interactivity and intrinsic , extraneous , and germane cognitive load. Educational

Psychology Review, 22(2), 123–138.

Sweller, J., Merrienboer, J. J. G. Van, & Paas, F. G. W. C. (1998). Cognitive Architecture and Instructional Design,

10(3), 251–296.

Tudoreanu, M. E. (2003). Designing effective program visualization tools for reducing user’s cognitive effort. In

SoftVis ’03 Proceedings of the 2003 ACM symposium on Software visualization (pp. 105–213). New York, New

York, USA: ACM Press.

Tuovinen, J. E. (2000). Optimising student cognitive load in computer education. In Proceedings of the

Australasian conference on Computing education -ACSE ’00 (pp. 235–241).

Winslow, L. E. (1996). Programming pedagogy- A psychological overview. ACM SIGCSE Bulletin, 28(3), 17–22.

International Journal on New Trends in Education and Their Implications

January 2014 Volume: 5 Issue: 1 Article: 10 ISSN 1309-6249

Copyright © International Journal on New Trends in Education and Their Implications / www.ijonte.org

103

Yousoof, M., Sapiyan, M., & Khaja, K. (2005). Reducing cognitive load in learning Computer Programming.

World Aademy of Sciene, Engineering and Technology, 469–472. Retrieved February10, 2012 from

www.waset.org/journals/waset/v12/v12-93.pdf

